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Abstract Metabolomics emerges as one of the corner-

stones in systems biology by characterizing metabolic

activities as the ultimate readout of physiological processes

of biological systems thereby linking genotypes with the

corresponding phenotypes. As metabolomics data are high-

dimensional, statistical data analysis is complex. No single

technique for statistical analysis and biological interpreta-

tion of these ultracomplex data is sufficient to reveal the full

information content of the data. Therefore a combination of

univariate and multivariate statistics, network topology and

biochemical pathway mapping analysis is in all cases rec-

ommended. Therefore, we developed a toolbox with fully

graphical user interface support in MATLAB� called cov-

ariance inverse (COVAIN). COVAIN provides a complete

workflow including uploading data, data preprocessing, uni-

and multivariate statistical analysis, Granger time-series

analysis, pathway mapping, correlation network topology

analysis and visualization, and finally saving results in a

user-friendly way. It covers analysis of variance, principal

components analysis, independent components analysis,

clustering and correlation coefficient analysis and integrates

new algorithms, such as Granger causality and permutation

entropy analysis that are not implemented in other similar

softwares. Furthermore, we provide a new algorithm to

reconstruct a differential Jacobian matrix of two different

metabolic conditions. The algorithm is based on the

assumptions of stochastic fluctuations in the metabolic net-

work as described by us recently. By integrating the meta-

bolomics covariance matrix and the stoichiometric matrix

N of the corresponding pathways this approach allows for a

systematic investigation of perturbation sites in the bio-

chemical network based on metabolomics data. COVAIN

was primarily developed for metabolomics data but can also

be used for other omics data analysis. A C language pro-

gramming module was integrated to handle computational

intensive work for large datasets, e.g., genome-level pro-

teomics and transcriptomics data sets which usually contain

several thousand or more variables. COVAIN can perform

cross analysis and integration between several datasets,

which might be useful to investigate responses on different

hierarchies of cellular contexts and to reveal the systems

response as an integrated molecular network. The source

codes can be downloaded from http://www.univie.ac.at/

mosys/software.html.

Keywords Metabolomics � Jacobian � Inverse modelling �
Genotype � Phenotype � Stoichiometric matrix � Stochastic

processes � Network � Perturbation sites

1 Introduction

Determining metabolite levels for pathway elucidation and

as a measure of metabolic fine and coarse control of path-

ways has a long tradition in biochemistry and physiology

(Meyerhof 1927, 1947; Bassham et al. 1950; Kacser and

Burns 1973; Heinrich and Rapoport 1974; Aprees 1980;

Cornishbowden and Hofmeyr 1994; Giersch 1994). These

measurements serve as clues to understanding pathway

organization. Changes on the metabolite level are closely
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related to the microenvironment. Metabolic reaction chains

are able to sense environmental stimuli within seconds and

milliseconds. The results are high metabolic fluctuations. It

is possible to exploit this biological variance to investigate

pathway structures or the regulation of different genotypes

using multivariate statistics. The application of metabolo-

mics in systems biology gives the unique opportunity to

investigate whole metabolic networks instead of single

pathways in response to various environmental or develop-

mental stimuli or for gene function analysis (Weckwerth

2003). Here, one can use metabolic markers as controls and

correlate these to other processes. Most of the current

metabolite profiling approaches rely on the measurement of

‘‘steady state’’ levels. The tests for significant changes in

averages or mean levels of specific metabolites will then

reveal alterations in the regulation of metabolism. This

multiple univariate analysis relies on the detection of sta-

tistically significant differences between sample groups.

Often we observe a high biological variation of individual

compounds within a set of samples from the same genotype.

This high biological variability of independent biological

replicates can be exploited to go beyond the classical ‘‘state-

differences-question’’ and can reveal systemic behaviour

and biochemical regulation using multivariate statistics. We

and others applied metabolite profiling to various biological

systems. In all these systems we observed significant pair-

wise correlations between specific metabolites—termed

co-regulation (Weckwerth et al. 2001, 2004a, b; Mendes

et al. 2005; Morgenthal et al. 2005, 2006; Kusano et al. 2007;

Wienkoop et al. 2008, 2010; Mochida et al. 2009; Fukushima

et al. 2011). These correlations showed conserved or altered

structures between different species (Morgenthal et al. 2006)

and provided the basis for constructing connectivity net-

works of metabolites based on Pearson’s correlation coeffi-

cient. This coefficient was then facilitated to quantify the

distance of the connectivity of all the measured metabolites

and enabled the construction of metabolite distance maps

visualized as differential metabolite correlation networks

(Weckwerth et al. 2001, 2004a, b; Weckwerth 2003). We

found significant alterations of these network structures

depending on the genotype and environmental perturbations

(Kose et al. 2001; Weckwerth et al. 2001, 2004a, b; Steuer

et al. 2003a, b; Morgenthal et al. 2005, 2006; Weckwerth and

Steuer 2005). A trend in these networks is a high connectivity

of only a few nodes (metabolites) whereas many nodes have

only a low connectivity (Weckwerth et al. 2004a, b). Thus,

the degree distribution of these networks can be investigated

systematically in the context of pathway connectivity

(Weckwerth and Fiehn 2002; Weckwerth 2003; Weckwerth

et al. 2004a, b; Morgenthal et al. 2006; Muller-Linow et al.

2007).

Based on these empirical observations we developed a

stochastic model of metabolism that can explain these

phenomena and provides a reasonable framework for

multivariate data mining and biological interpretation of

huge metabolomic experiments (Steuer et al. 2003a, b;

Weckwerth 2003). Early work of Arkin and Ross (Arkin

et al. 1997, 1998; Samoilov et al. 2001; Rao et al. 2002;

Vance et al. 2002) and Rascher and Lüttge (Rascher et al.

2001) demonstrated the need to introduce stochastic mod-

els for the interpretation of metabolic networks. In analogy,

by introducing metabolite fluctuation using stochastic dif-

ferential equations for a glycolytic pathway system the

putative origin of correlations in metabolomic data was

proposed in order to connect these correlations to the

underlying enzymatic pathway structure (Steuer et al.

2003a, b). Using these correlation networks one is capable

of revealing alterations in enzymatic activity and altera-

tions in the differential analysis of various metabolic states

(Weckwerth et al. 2004a, b; Camacho et al. 2005;

Morgenthal et al. 2005). Changes in the network topology

point to regulatory hubs in the biochemical network

because the correlation matrix of all metabolite pairs is a

fingerprint of the enzymatic and regulatory reaction net-

work (Weckwerth 2003). It is further possible to compare

the measured correlation network with the proposed

underlying reaction network and the corresponding

numerically resolved correlation network (Steuer et al.

2003a, b; Weckwerth 2003; Morgenthal et al. 2006). Here

it becomes evident that correlations cannot be predicted

only on the basis of pathway connectivity. Regulatory

properties, for instance the modulation of enzyme activity

serve as a source of changes in the topology of the corre-

lation network (Weckwerth 2003; Weckwerth et al.

2004a, b; Camacho et al. 2005; Weckwerth and Steuer

2005; Morgenthal et al. 2006). In studies of other groups

metabolite correlation network analyses were adapted to

yeast metabolism and enzyme concentration fluctuations

(Camacho et al. 2005), Medicago truncatula cell cultures

and their response to methyljasmonate as an elicitor

(Broeckling et al. 2005) or lipid metabolism in a transgenic

mouse model (Clish et al. 2004). From these and our

studies it became clear that the analysis of dynamic met-

abolic networks gives the opportunity to observe in vivo

regulation of dynamic biochemical networks otherwise not

accessible. Some components of the biochemical networks

function also as harmonic oscillators or effectors and it will

be a challenge for future applications to compare experi-

mental fluctuations of perturbed system with computer

simulations of fluctuating complex reaction pathway net-

works (Weckwerth 2011).

However, the interrelation of an enzymatic reaction net-

work and the resulting correlation matrix is still difficult

to be interpreted (Steuer et al. 2003a, b; Weckwerth 2003;

Camacho et al. 2005; Muller-Linow et al. 2007). Any alter-

ation in the reaction network, inhibition of enzyme activity,
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genetic suppression or enhancement of a reaction or addition

of new pathways will result in different metabolite patterns

and it is necessary to analyse these patterns systematically

for functional interpretations (Weckwerth 2003). At the

moment these patterns can not be predicted easily from

modelling approaches (Weckwerth 2011). On the other hand

there is a systematic relation between these patterns—rep-

resented by the data covariance matrix C—and the under-

lying biochemical network—structurally represented by the

stoichiometric matrix N—as demonstrated in our and others

recent work assuming a stochastic model of metabolism

(Steuer et al. 2003a, b; Weckwerth 2003, 2011; Morgenthal

et al. 2005, 2006; Muller-Linow et al. 2007). Because most of

the algorithms for unsupervised or supervised data mining

look for optimal variance and covariance discrimination of

sample groups in data sets, this stochastic model of metab-

olism provides a fundamental relationship between multi-

variate statistics, metabolite profiling and biochemical

regulation (Weckwerth and Morgenthal 2005).

However, no single statistical technique alone is suffi-

cient to reveal the full information content of the data. For

an introduction into current techniques and methods the

following studies provide an excellent overview (Steuer

et al. 2006; Smilde et al. 2010; Westerhuis et al. 2010;

Hendrickx et al. 2011; Jansen et al. 2011). A combination

of univariate and multivariate statistics, network topology,

biochemical pathway mapping and inverse mapping of

metabolic networks is in all cases recommended. There-

fore, we developed a toolbox with fully graphical user

interface (GUI) support in MATLAB� called covariance

inverse (COVAIN). As the covariance matrix is the basis

for many functions of the toolbox and we tried to give an

inverse functional interpretation of this covariance matrix

we decided for this name. Many classical features such as

principal components analysis (PCA), independent com-

ponents analysis (ICA), analysis of variance (ANOVA) and

correlation analysis as well as novel features such as

Granger causality and permutation entropy (PE) are

implemented in COVAIN allowing the user to compare

different statistical methods and results for the interpreta-

tion of the original data. Moreover a new algorithm is

implemented based on the assumptions of stochastic met-

abolic networks as discussed above. This algorithm allows

for the inverse calculation of the differential biochemical

Jacobian of two different states from metabolomics

covariance data. Though this is mathematically a compli-

cated inverse problem it is possible to identify putative

perturbation sites in a biochemical network based on

metabolomics data and stochastic modeling. Opportunities

and problems of this approach are discussed in this paper.

In the following sections the toolbox is described in detail.

2 Methods

2.1 GUI strategy and data structure

COVAIN synchronizes the actions of over 60 GUI com-

ponents (such as pushbutton, table and list, etc.) by asso-

ciating the status of each action and the resulted data

uniquely with the main panel GUI handle. The GUI has

two fields: (1) the status of all actions, i.e., if they have

Fig. 1 Illustration of COVAIN GUI strategy and data organization

principle. Before activating a GUI action, this action needs to send a

signal to the (unique) GUI root handle to check if it can be executed.

For example, no analysis will be done without loading data, and no

outlier adjustment will be performed without filling missing values.

After executing an action, a status update signal will be sent to the GUI

handle, and if this action can be executed, the result will be stored in

the GUI handle associated data structure in the corresponding field
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been activated or not, (2) the results storage. The original

and preprocessed data, all intermediate results are saved in

a structure format which consists of results of all data

analysis processes. Figure 1 shows the GUI strategy and a

simplified data structure.

2.2 Data preprocessing

2.2.1 Missing value imputation

The default option is using the half of the minimal value of

all data to fill the missing values that are not detected by

instruments. It is also optional to use prior distribution to

estimate the missing values. The strategy is based on the

assumption that measurements are normal-distributed.

Consider an n-by-l data matrix Xnl, where n is the

number of variables in rows and l is the total number of

samples in columns. p is the number of replicates per one

condition or treatment resulting in a submatrix Xnp. xmin is

the minimal value of all non-missing values in Xnl, Sj is the

standard deviation value of all non-missing values in the j-

th column (j = 1, 2,…,p). Then suppose there are q miss-

ing values in the i-th row (i = 1, 2,…,n) of the submatrix

Xnp. According to the number of non-missing values p - q,

the missing value imputation is done as follows:

• if p - q [ 1, the missing values are sampled from the

estimated normal distribution N(li, Si), where the mean

value li and standard deviation value Si is estimated

from the rest p - q replicates.

• if p - q B 1, the missing value is replaced by half of

the minimal value, xmin/2.

2.2.2 Outlier adjustment

The outliers are defined as measurements outside of two

standard deviations of mean values for each condition of

each compound. The outlier adjustment firstly proposes a

prior distribution of the rest of the data and then randomly

samples values from this distribution to fill outliers.

2.2.3 Data transformation

COVAIN provides two data transformations tailored for

subsequent data analysis, log-transformation (log2 and

log10) and z score transformation. Log-transformation

improves normal distribution of the data. z score transfor-

mation is one of the most important options to allow for

intra-comparison of values basically transforming covari-

ance analysis into correlation analysis. However, the user

has to be aware that these transformations will affect the

outcome of the statistical analysis dramatically. z score

transformation will allow the comparison of compounds

which have completely different scales or concentration

ranges, i.e. the influence of a very low concentrated on a

very high concentrated compound and vice versa.

2.3 Multivariate statistics

2.3.1 Correlation analysis

The correlation analysis provides two methods: Pearson’s

moment correlation (the default) and Spearman’s rank

correlation. Mean values for each condition are used for

calculation. For small datasets (the number of variables

is less than one hundred), the correlation coefficients

across all conditions are shown in a heat map and saved;

for medium datasets (the number of variables is hundred

to several hundred), no graphs are shown but the cor-

relation coefficients data are saved; for large datasets, the

correlation coefficients are calculated by an external C pro-

gram via a MEX file to achieve efficient calculation time and

stored in a separate txt file to prevent a too large size of the

GUI (which will affect the software efficiency).

The correlation analysis also provides results for net-

work analysis (for further details of metabolite correla-

tion analysis see Weckwerth and Fiehn 2002; Steuer

et al. 2003a, b; Weckwerth 2003; Weckwerth et al.

2004a, b; Morgenthal et al. 2005, 2006). Two compounds

are considered connected if their pair-wise absolute cor-

relation coefficient is larger than a threshold value.

COVAIN predefines three threshold values as 0.5, 0.8

and 0.95, p value 0.01. It collects the number of con-

nections of a compound to other compounds and saves

this information.

2.3.2 PCA and ICA

The PCA function uses the MATLAB� Statistics Toolbox

function princomp while ICA uses the method published in

Scholz et al. (2004). The user needs to define how many

principal components (PCs) and independent components

(ICs) to be shown in the scatter plots of pair-wise PCs and

ICs. The PCA generates four figures: the first figure shows

the variance occupancy (in percentage) of each PC, the

second shows the loadings plot of pair-wise PCs, the third

and the fourth show the scores plot of all samples in a 2-D

(PC1 and PC2 as x- and y-axis) and 3-D (PC1, PC2 and

PC3 as x-, y- and z-axis) graph, respectively. The ICA also

provides four figures: the first figure shows kurtosis of

every IC, the second to the fourth figures show scores and

loadings. COVAIN uses MATLAB� Statistics Toolbox

gname function to label the names of compounds and

conditions. COVAIN provides two separate buttons for

labeling PCA and ICA, respectively.
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2.3.3 Clustering

The clustering analysis is doing bi-hierarchical clustering

for both compounds and conditions. The case–control

analysis pops up a window to let the user define which

condition is the control and cluster the difference upon the

control condition, while the ‘‘all conditions’’ analysis

biclusters all conditions on their measurements. Figure 2

shows an example of the case–control analysis.

Basic parameters and descriptions of the procedures are

found in the options and help functions.

2.4 Time-series analysis

2.4.1 Data selection

Time-series analysis requires the user to define the indices

of the conditions in a specific format. This is important,

because user’s data may contain time points whose names

are differentially labeled, for instance, ‘‘20 min’’, ‘‘0.5 h’’,

‘‘1 day’’. The COVAIN will read the sequence of time

points by sorting their names as ‘‘0.5 h’’, ‘‘1 day’’ and

‘‘20 min’’, which is incorrect. Therefore the user has to

define the time-series data in a logical way, i.e. in minutes:

20, 30 and 1,440 min.

2.4.2 PE analysis

PE is originated from dynamic systems theory (Bandt and

Pompe 2002). It calculates the entropy of ordered patterns

of time-series, shown in Eq. 1.

PEm ¼ �
Xn

i¼1

pi logðpiÞ ð1Þ

where pi is the probability of occurrence of order pattern

i in three subsequent time points measured for metabolite

m under one condition and computed as the relative fre-

quency of pattern i in the total of n - 2 consecutive three-

point order patterns.

High entropy indicates many response actions in the

time-series, thereby being more complex or more unstable.

Recently, we applied PE to gene expression data from

AtGenExpress (Kilian et al. 2007) and found house-keep-

ing genes have lower PE and abiotic response genes have

higher PE (Sun et al. 2010). Therefore, PE can be used to

predict the functions of unknown genes. Here, the PE can

be applied for the first time in metabolomics data analysis.

2.4.3 Granger causation analysis

Consider the time-series of variable X and Y. They can be

formulized as Eq. 2

XðtÞ ¼
Xd

i¼1

CX;i Xðt � iÞ þ
Xd

i¼1

CXY ;i Yðt � iÞ þ RXðtÞ

YðtÞ ¼
Xd

i¼1

CYX;i Xðt � iÞ þ
Xd

i¼1

CY ;i Yðt � iÞ þ RYðtÞ

ð2Þ

with Cx,i regression coefficient between x(t) with x(t - i) and

Cxy,i regression coefficient between x(t) with y(t - i).

X(t) and Y(t) are the conditions at time point t, R is the

Fig. 2 An example of the case–

control clustering analysis. In

the pop-up window, users need

to choose one control condition

in the left side of panel, and the

default cases are all other

conditions. It is optional to

choose several other case

conditions
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residual error and d is the maximal time lag. In COVAIN, an

association between X and Y is considered existing if the

p value of the F test on the cross-coefficients is less than

0.01. For short time-series of metabolomics data, d is set to 1.

However, this feature can be adjusted according to the

number of time points measured.

The Granger causality analysis (1969) aims to analyze if

the time-series of one variable is ‘‘controlled’’ by time-

lagged values of other variables. The theory was recently

applied in a metabolism study (Walther et al. 2010). The

lag of time point is set to 1 for time-series with only a few

data points (\10), however, can be chosen flexible.

COVAIN identifies ‘‘causality’’ and a correlation between

two compounds if the p value of the F test on the regres-

sion coefficients is smaller than 0.01. The Granger cau-

sality analysis results are saved.

Basic parameters and descriptions of the procedures are

found in the options and help functions.

2.5 Inverse calculation of the Jacobian

For a dynamical system, the Jacobian matrix characterizes

the local dynamics around the steady state. The dynamic

representation of a metabolic pathway consisting of n

metabolites can be a set of differential equations (Eq. 3),

where (f1, f2,…,fn) are the functions of metabolite con-

centrations (S1, S2,…,Sn) over time. The corresponding

Jacobian is the matrix of all first-order partial derivatives of

all functions fi on all metabolites Sj, shown in Eq. 4. In this

way, the Jacobian describes the influence on the change of

each metabolite upon the changes of other metabolites.

dS1

dt ¼ f1ðS1; S2; . . .; SnÞ
dS2

dt ¼ f2ðS1; S2; . . .; SnÞ
..
.

dSn

dt ¼ fnðS1; S2; . . .; SnÞ

8
>>><

>>>:
ð3Þ

Jacobian ¼

of1
oS1

of1
oS2

� � � of1
oSn

of2
oS1

of2
oS2

� � � of2
oSn

..

. ..
. . .

. ..
.

ofn
oS1

ofn
oS2

� � � ofn
oSn

0
BBBB@

1
CCCCA

n�n

ð4Þ

Recently, we developed an approach that linked the

Jacobian of a metabolic system with the covariance of

the involved metabolite concentration data represented by

Eq. 5 (Steuer et al. 2003a, b; Weckwerth 2003, 2011):

CJT þ JC ¼ �2D: ð5Þ

Here, J is the Jacobian matrix. D is the fluctuation matrix in

which the diagonal entries characterize the fluctuation

magnitude of each metabolite. C is the covariance matrix

of metabolites.

By connecting the covariance matrix and the Jacobian

matrix with the fluctuation matrix, Eq. 5 links the statistical

features of the data with dynamical properties of the sys-

tem, while taking into account the noise in the data cap-

tured by the fluctuation matrix. The generic type of Eq. 5 is

widely used in control systems and is known as the

‘‘Lyapunov Equation’’ (Paulsson 2005). Later, van Kam-

pen (1992) expanded it for general stochastic systems.

Despite this theoretical basis, the solution of the Jacobian

cannot be obtained directly, because J has more indepen-

dent variables than the symmetric covariance matrix, or in

other words, the equations are underdetermined. For

example, an n-by-n covariance matrix has n * (n ? 1)/2

independent values due to its symmetry, while there are n2

values in the Jacobian that need to be determined. The

authors (Steuer et al. 2003a, b) suggested using parame-

terized solutions to eliminate such under-determination.

However, as the parameter space for uncertain parameters

are large, the actual Jacobian may not be easily obtained by

such parameterization.

The elements of the Jacobian matrix, the square matrix

with elements pertaining to the partial derivative of the rate

of change of every metabolite with regard to all metabo-

lites in the system (Eq. 4), can be expanded into separate

terms according to reversible and irreversible reactions

(Eq. 6),

J ¼ Nd
of

oS
ð6Þ

where Nd is the directed stoichiometric matrix containing

reversible and irreversible enzymatic reactions near the

steady state. The information for the reversible and irre-

versible reactions between Si and Sj can be obtained by

genome-scale network reconstruction based on publicly

accessible database such as KEGG (Kanehisa et al. 2008)

and BioCyc (Karp et al. 2005).

As introduced above, the covariance matrix is sym-

metric and the Eq. 5 is therefore under-determined. We

then can circumvent this problem by introducing the stoi-

chiometric matrix (N) of a metabolic network, which is

typically very sparse (Weckwerth 2011). If we integrate the

reversibility and irreversibility of the reactions with N, we

have a ‘‘directed stoichiometric matrix’’. We therefore

label these directional information in the traditional N and

name it as Nd (Eq. 6) and then determine non-zero entries

in the Jacobian (J). Sometimes, there exists regulation

between metabolites without substances consumption,

which is reflected in J but not in the N. For such cases, we

need additional knowledge from literature and databases to

assign these non-zero entries in J.

N is very sparse. A typical metabolic network recon-

structed recently for Arabidopsis thaliana has 1,567 reac-

tions among 1,748 metabolites (Dal’Molin et al. 2010).
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Furthermore, we searched metabolic network models in the

BioModels database (Le Novere et al. 2006) and found no

exceptions to the rule that the number of non-zero entries in

N exceeds the independent entries in C.

Another case is if the number of zero entries in

J exceeds the n * (n ? 1)/2 independent entries in C. It is

the most common case since metabolic networks are

sparse. In this situation, Eq. 5 is over-determined. Then, an

approximate solution (Jreverse) can be obtained by using

regularization methods (Engl et al. 1996, 2009). To solve

the inverse Jacobian from the covariance matrix we apply

Eq. 5 and a total least square algorithm (Markovsky and

Van Huffel 2007). The diagonal entries of the fluctuation

matrix D are randomly sampled, the amplitude can be

chosen in the options.

3 Results and discussion

3.1 General features of COVAIN

COVAIN starts with uploading a dataset in Microsoft

Excel or tab-separated text-like formats. In the data pre-

processing step it recognizes the missing values and out-

liers in the dataset. It is optional to fill missing values or

adjust outliers (see below). Data can be transformed in log

or z score scaling. The preprocessed data can be visualized

by error bar plot and ANOVA.

COVAIN consists of four modules. (1) Multivariate

statistics, including correlation analysis, PCA, ICA and

clustering analysis, (2) time-series analysis, including

correlation analysis, PCA, clustering, PE and Granger

causation analysis, (3) network analysis, including topo-

logical analysis, KEGG pathway mapping and network

visualization, (4) inverse Jacobian calculation, that com-

pute the Jacobian matrix and plot the differential Jacobian

corresponding to two different metabolic conditions asso-

ciated with the data. The network analysis and inverse

Jacobian analysis use the results from multivariate statistics

and time-series analysis as input.

Finally, COVAIN collects all the results, saves them to a

MATLAB worksapce (.mat format) and exports the pre-

processed data, the correlation coefficients and the loadings

of PCA and/or ICA in Excel or tab-separated text format.

Figure 3 shows the software structure and strategy.

3.2 Network topological analysis, KEGG mapping

and visualization

The network topology is inferred from correlation analysis

or by Granger causality analysis as described in the Sect. 2.

For pathway mapping and corresponding network analysis

Fig. 3 Illustration of COVAIN

workflow: data loading,

preprocessing to analysis,

visualization and results

exporting
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Fig. 4 Pathway mapping and network topology analysis. a Metabolo-

mics data from Arabidopsis thaliana cell cultures were mapped to

KEGG-pathways (Lena Fragner, Yanmei Chen, Xiaoliang Sun and

Wolfram Weckwerth, unpublished data). b In a second step a minimal

graph network was defined from the pathways. This network was

visualized with Cytoscape (Shannon et al. 2003). The yellow nodes

represent the experimentally detected metabolites. The red nodes
represent a minimal set of metabolites complementing the set of

experimentally detected metabolites. c The connectivity structure can

be analysed by Cytoscape and reveals behavior similar to a power-law

(Color figure online)

X. Sun, W. Weckwerth

123



we have implemented several algorithms (see Fig. 4a).

First, the metabolite names stemming from a typical met-

abolomics analysis are mapped against KEGG names and

formulas to identify all involved pathways. In a second step

a minimal interconnected graph model, i.e., each node can

be reached from every other node, is defined. The resulting

pathway network corresponding to the experimentally

detected metabolites and a minimal set of interconnecting

metabolites is exported and visualized with Cytoscape

(Fig. 4b).

COVAIN uses MATLAB� Bioinformatics Toolbox

function biograph to visualize the network with the

‘‘equilibrium’’ layout. At the same time, COVAIN pro-

duces one.net format file and one.sif format file to allow

visualization of the network using Pajek (Batagelj and

Mrvar 2004) or Cytoscape, respectively (Shannon et al.

2003). In particular, Cytoscape version 2.8 has integrated a

‘‘NetworkAnalyzer’’ plugin that can analyze network

properties, such as degree distribution, betweenness and

shortest path distribution and other features (Smoot et al.

2011).

3.3 Inverse calculation of a differential Jacobian

Typically, a metabolomics experiment produces a large

data matrix with many samples (conditions) and many

variables (metabolites). A complete workflow is described

elsewhere (Weckwerth and Morgenthal 2005; Weckwerth

2011). Recently, we have derived an equation which con-

nects the covariance matrix C of such an experiment with

the Jacobian J of the underlying network of biochemical

reactions and regulations (Steuer et al. 2003a, b). The

equation can be solved if the stoichiometric matrix N of a

metabolic network is exploited (Weckwerth 2011). This

equation can be used for inverse calculation of the Jacobian

from metabolomics covariance data. The method is

described in detail in the Sect. 2. To reveal perturbation

sites between two different metabolic states we introduce

now the differential Jacobian. Suppose multiple repeat

measurements under two different treatments a and b are

available. For both treatment conditions, the associated

Jacobian Ja and Jb can be calculated separately. The dif-

ferential Jacobian matrix, dJij, is defined by the relative

change between the Jacobian A and B for every element

i, j, as defined by Eq. 7. Note that we use the log2 ratio to

center on zero and render the ratios symmetric around zero.

dJij ¼ log2 abs
Ja;ij

Jb;ij

� �� �
ð7Þ

The matrix of all elements dJij is a square matrix as are the

original Jacobian matrices for conditions a and b.

We have used a published model of the red blood cell

from BioModels database (Le Novere et al. 2006) to

illustrate the concept of the inverse differential Jacobian

(Fig. 5a). Based on this model metabolite data are simu-

lated which are comparable with a typical experimental

data set. Two different states (high and low import of

glucose, reaction vimport) and the corresponding covariance

matrices are calculated. For the inverse approach we have

used the simulated covariance data for each state (high and

low glucose import) and Eq. 5 (see Method description 2)

to calculate the Jacobian from the data. This corresponds to

Fig. 4 continued
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the typical situation of the experimentalist: in the experi-

mental design for the investigation of a biological sys-

tem—different genotypes/phenotypes, growth conditions

or treatments—a preliminary knowledge or estimate of the

structure of the underlying biochemical network is

assumed. This preknowledge can be translated into a

stoichiometric matrix N (for further details see Weckwerth

2011). What is missing is the correct localization of one or

more perturbation sites in the biochemical network. Using

this approach it is possible to systematically search for

differential regulations of several reactions as the response

to changed metabolite concentrations (Weckwerth 2011).

This is exemplified for the perturbed red blood cell model

in Fig. 5b. The differential Jacobian shows—as expected—

strong perturbation sites at the first reactions where

imported glucose is participating (upper left corner of the

differential Jacobian in Fig. 5b). A drawback is that many

other reactions seem to show responses as well, and the
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reproducibility of the calculation needs to be tested. The

inverse calculation is highly sensitive to noisy data and will

result in low reproducibility of the Jacobian calculations.

This is a typical inverse problem (Engl et al. 1996, 2009)

and will be addressed by us further for the optimization of

the inverse calculation of the Jacobian from noisy and

incomplete data.

4 Conclusion

Here, a Metabolomics toolbox is presented which com-

bines classical features and novel tools for data mining in

metabolomics data sets. A focus is covariance and related

correlation network analysis, as well as projection of data

into pathways and the relation of metabolite dynamics in

form of the covariance matrix C to the corresponding

pathways in form of the stoichiometric matrix Nd and the

Jacobian J. Initial algorithms provide the convenient and

direct linkage of metabolite data and the underlying bio-

chemical network. This linkage enables the investigation of

regulatory and biochemical perturbation sites in a complex

metabolic network. Future work will extend these methods

to genome-scale applications. Drawbacks of the methods

are the incompleteness of Metabolomics data sets. Major

efforts in the future will include the improvement of the

metabolomics techniques to cover more metabolites and

the adjustment of measured metabolites with the entries of

the stoichiometric matrix (Weckwerth 2011). Generic

properties of the covariance–Jacobian relation will be

investigated in the future. Furthermore, the influence of

stochastic fluctuation on regulatory properties within met-

abolic networks can be investigated systematically using

the metabolomics toolbox COVAIN.
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