Molecular repertoire of Deinococcus radiodurans after 1 year of exposure outside the International Space Station within the Tanpopo mission

Emanuel Ott, Yuko Kawaguchi, Denise Koelbl, Elke Rabbow, Petra Rettberg, Maximilian Mora, Christine Moissl-Eichinger, Wolfram Weckwerth, Akihiko Yamagishi, Tetyana Milojevic

Background: The extraordinarily resistant bacterium Deinococcus radiodurans withstands harsh environmental conditions present in outer space. Deinococcus radiodurans was exposed for 1 year outside the International Space Station within Tanpopo orbital mission to investigate microbial survival and space travel. In addition, a ground-based simulation experiment with conditions, mirroring those from low Earth orbit, was performed.

Methods: We monitored Deinococcus radiodurans cells during early stage of recovery after low Earth orbit exposure using electron microscopy tools. Furthermore, proteomic, transcriptomic and metabolomic analyses were performed to identify molecular mechanisms responsible for the survival of Deinococcus radiodurans in low Earth orbit.

Results: D. radiodurans cells exposed to low Earth orbit conditions do not exhibit any morphological damage. However, an accumulation of numerous outer-membrane-associated vesicles was observed. On levels of proteins and transcripts, a multi-faceted response was detected to alleviate cell stress. The UvrABC endonuclease excision repair mechanism was triggered to cope with DNA damage. Defense against reactive oxygen species is mirrored by the increased abundance of catalases and is accompanied by the increased abundance of putrescine, which works as reactive oxygen species scavenging molecule. In addition, several proteins and mRNAs, responsible for regulatory and transporting functions showed increased abundances. The decrease in primary metabolites indicates alternations in the energy status, which is needed to repair damaged molecules.

Conclusion: Low Earth orbit induced molecular rearrangements trigger multiple components of metabolic stress response and regulatory networks in exposed microbial cells. Presented results show that the non-sporulating bacterium Deinococcus radiodurans survived long-term low Earth orbit exposure if wavelength below 200 nm are not present, which mirrors the UV spectrum of Mars, where CO2 effectively provides a shield below 190 nm. These results should be considered in the context of planetary protection concerns and the development of new sterilization techniques for future space missions.

Department of Biophysical Chemistry, Functional and Evolutionary Ecology, Large-Instrument Facility for Mass Spectrometry in Life Sciences
External organisation(s)
Chiba Institute of Technology, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Tokyo Institute of Technology (TIT), Medizinische Universität Graz
No. of pages
Publication date
Peer reviewed
Austrian Fields of Science 2012
106037 Proteomics, 106022 Microbiology
Portal url