Machine learning and data-driven inverse modeling of metabolomics unveil key process of active aging

Author(s)
Jiahang Li, Martin Brenner, Iro Pierides, Barbara Wessner, Bernhard Franzke, Eva-Maria Strasser, Steffen Waldherr, Karl-Heinz Wagner, Wolfram Weckwerth
Organisation(s)
Functional and Evolutionary Ecology, Department of Sport and Human Movement Science, Department of Nutritional Sciences, Research Platform Active Ageing, Research Platform Vienna Metabolomics Center
External organisation(s)
Sozialmedizinisches Zentrum Süd – Kaiser-Franz-Josef-Spital
Journal
bioRxiv : the preprint server for biology
ISSN
2692-8205
DOI
https://doi.org/10.1101/2024.08.27.609825
Publication date
08-2024
Austrian Fields of Science 2012
302020 Gerontology, 106044 Systems biology, 303009 Nutritional sciences, 303028 Sport science
Portal url
https://ucrisportal.univie.ac.at/en/publications/machine-learning-and-datadriven-inverse-modeling-of-metabolomics-unveil-key-process-of-active-aging(96b27ca5-4b15-4830-9926-481e0c4058cf).html