Machine learning and data-driven inverse modeling of metabolomics unveil key process of active aging

Author(s)
Jiahang Li, Martin Brenner, Iro Pierides, Barbara Wessner, Bernhard Franzke, Eva-Maria Strasser, Steffen Waldherr, Karl-Heinz Wagner, Wolfram Weckwerth
Organisation(s)
Functional and Evolutionary Ecology, Department of Sport and Human Movement Science, Department of Nutritional Sciences, Research Platform Vienna Metabolomics Center
External organisation(s)
Sozialmedizinisches Zentrum Süd – Kaiser-Franz-Josef-Spital
Journal
bioRxiv : the preprint server for biology
ISSN
2692-8205
DOI
https://doi.org/10.1101/2024.08.27.609825
Publication date
08-2024
Austrian Fields of Science 2012
302020 Gerontology, 106044 Systems biology, 303009 Nutritional sciences, 303028 Sport science
Portal url
https://ucrisportal.univie.ac.at/en/publications/96b27ca5-4b15-4830-9926-481e0c4058cf